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Restricted Constant of Motion for the
One-Dimensional Harmonic Oscillator With
Quadratic Dissipation and Some Consequences
in Statistic and Quantum Mechanics

G. LopeZ

A restricted constant of motion, Lagrangian and Hamiltonian, for the harmonic oscilla-
tor with quadratic dissipation is deduced. The restriction comes from the consideration
of the constant of motion for the velocity of the particle eitherfor 0 or forv < 0.

A study is done about the implications that these restricted variables have on the spe-
cific heat of a thermodynamical system of oscillators with this dissipation, and on the
quantization of this dissipative system.

1. INTRODUCTION

There have been many attempts to quantize dissipative system (Cantrijn,
1982; Potasek and Yunke, 1980; Ran and Griffin, 1974; Senitzky, 1960) through
Hamiltonian formalism. However, the consistency and the real meaning of these
Hamiltonians is quite questionable. For one-dimensional systems, it is known that
one way to obtain a consistent meaningful Hamiltonian for a dissipative system
is to first get the constant of motion associated with this systeopék, 1996a).
Once a correct Hamiltonian for a dissipative system is obtained, it is meaningful to
study its possible applications in statistic mechaniagp@z, 1996b) or quantum
mechanics (bpez and Sosa, to appear).

In this paper, the constant of motion approach is used to find a Hamiltonian
for one-dimensional dissipative harmonic oscillator, where the dissipation depends
guadratically on the velocity. In addition, this Hamiltonian is used to study statistic
properties as well as the quantized characteristics of this dissipative system.
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2. RESTRICTED CONSTANT OF MOTION

The constant of motiorK, = K,(x, v) of the one-dimensional harmonic
oscillator with quadratic dependence in the velocity

dx
dt
q 1)
& - aV|V|
e~ “
satisfies the equation
9K, K,

_ - =0, 2

Vax < X + IVI) Py (2)

where« is the parameter which characterizes the dissipatiors the natural
frequency of oscillations, and| is the absolute value of the velocity

v, if v>20
= { —v, ifv<O. 3)
The solution of Eq. (2) is given by
I exp(2rx,/m) + m70)2[(2 x/m — 1) exp(2:x/m) + 1]
2 P 2a/mz P !
ifv>0
Ky = (4)

—mv2 exp2ax/m)+ —— i [1 — (2ax/m+ 1) expE2ax/m)],

(2/ m)>

ifv<o.

One may call this expression as “restricted constant of motion” (r-constant of
motion, for short) since its value remains constant as long as as the motion of the
particle remains wittv > 0 orv < 0. Whenever there be a change in the sign of
the velocity, the value of (4) changes, as it is shown in the next section.

3. SPIRAL MOTION IN ( x,Vv) SPACE

Since the r-constant of motion changesvox 0 andv > 0, it is necessary
to take into account this fact to study the motion in e plane. If the initial
conditions of Eq. (1) are such thet0) = x” = xo andv(0) = v{¥ = vy > 0, the
nth trace in the upper plang & 0) is given (using Eq. (4)) by

(2n)
v=\'/|:KJr T :|exp(—2ax/m)— i[%x_l} (5a)

m  (2a/m)? (20/m)?
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whereK @ is defined as

Mw? 20 Mw?
K(Zn) _ @) 2 (2n) 5b
£ aymy [ %07 | e /M)t G D)
andk? is given by
1 Mw?
0) _
K 2m exp(Zxxo/m) |:VO (2 / )2 (206X0/m )] + W (5C)
The quantltyx(zn) is calculated from the equation
2 Za Maw?
K @-1) _ Mw (2n) 1 2 (2n) , 54
ST amy 1| e T/m) 4 G OO

where the constarit ®*~? is the constant defined prewously for the lower plane
v < 0. The conditiorv = 0 in (5a) defines the poing?™™; therefore

2 20 w2
K@) _ Mw 0 (nt+1) 20 x @D 5
s Gaym | X§ 1| exp(2axg"/m) + o/ (5€)

which determine the cond|t|0rxX2”+1) 0) for the definition of the r-constant of

motion K @Y for the lower planes < 0,
mw? 20 mw?
K@) _ 200 _ 1] exp(2ax@ D /m  (6a

Given this r-constant of motion, the trace in thevplane forv < 0 can be done
through Eq. (4),

2K @) 202 202 [2
v:—\/[ —— - (20[7m)2i| exp(2>:x/m)+m[ﬁax+l], (6b)

and the pointx?"?, 0), defined by setting = 0 in Eq. (6b).

Maw? 20( Mw
K @+1) _ (2n+2) 1] exo(2 X(2n+2)
S T L R/ m) +

2

(6¢)

establishes the condition to determine the conﬂ@ﬁf*z) for v > 0, and so on.

This procedure brings about the expected shrinking spiral dynamical behavior on
thex—vspace. If the initial condition is such thag < 0, then one starts with the
constant fow < 0 and follows the same procedure.

4. RESTRICTED LAGRANGIAN AND HAMILTONIAN

Using the solution of “the one-dimensional inverse problem of the mechanics”
(Darboux, 1894) to find the restricted Lagrangian (r-Lagrangian) in terms of the
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r-constant of motion (Kobusen, 1979%héz and Herandez, 1989),

Lov) = V/v Kaé); £) de, @)

the r-Lagrangian associated with the system (1) is

L2 exp(a me’ o 1) exp(2 1
oM exp(2xx/m) — W[( ax/m— 1) exp(2xx/m) + 1],
ifv>0
I—oz = (8)
}mvz exp(2ax,/m) — L&[l — (2ax/m + 1) exp2ax/m)]
2 (20c/m)2 ’
if v <O,

and the restricted generalized (r-generalized) linear momentum is

+ [L1o(x) 6(v). (92)

mv exp(2xx,/m), ifv>0
| mv exp2ax/m), ifv<O0

wheres(v) is the distribution delta of Dirac (Gel'fand and Shilov, 1968) anfy[x)
is the discontinuity jump of (8) at = 0,

miw®
20(2
From (9a) knowingv as a function ofp, andx is complicated because of the
generalized functiof(v). However, one notices that if (9a) is used in the Legendre
transformatiorH = pv — L, the resulting terml[]o(x)vs(v) is canceledys(v) =

0). So, the appearing of &term in the Hamiltonian is a slightly subtle matter.

Moreover, one could study the case where things happen “almost everywhere
(Hewitt and Stromberg, 1965). In this cas@s a function of, andx is given by

Py €XP(—2cx/m), if p, >0
mv =
P €XP(2¢Xx/ M), if p, < 0.

[Llo(x) =

{sinh(Zxx/m) — Z‘%X cosh(2>zx/m)}. (9b)

(10)

Substitutingv from Eg. (10) into Eq. (4), one gets the restrictive Hamiltonian
(r-Hamiltonian)
2

oy ©XP200/M) + 5 T (/M — 1) exp(@a/m) + 1],
if p, >0
Ha - p a)z (11)
om exp(axq/m) + W[l — (2aq/m + 1) exp(-2aq/m)],
if p, <O.
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The Hamiltonian’s equations of motion fgg, > 0 are given by

1= P explc
G =~ exp(-2q/m)

) (12a)
. ap;
pot = r:z eXp(—Zqu/m) - mwzq exp(zxq/m)r
and forp, < 0 are given by
6= 2 exp(aea/m)
(12b)
_ap?

P, = =7 exp(&a/m) — ma’q exp(-2eq/m).
The difference between the dynamical system (1) and (12) is evident. Equations
(4), (8), (9a), (10), and (11) have the right limit far— 0. For dissipation at

first order in the parameter, the r-constant of motion and the r-Hamiltonian are

given by

m .
E(V2 + 0°X?) + a(0®3 +v?x), ifv=0
K = (13a)

2 4 0?X%) — a(®x3 +v?x), ifv<O0

and

1 .
p%/2m+ Emwzq2 + a(w?’q® — p’q/m), ifp=0

H = 13b
2 1 22 2~3 2 H ( )
p/2m+ Smwq —a(w°q” — p7q/m), if p<O,

wherep has the usual expression for the generalized linear momengumnv).

5. APPLICATION IN CLASSICAL STATISTIC MECHANICS

Assume a crystal embedded in a boson medium such that the interaction of
the atoms with this medium brings about damping in the vibrational degree of
freedom of the atoms. Assume also that the damping could be described by Eq. (1)
for each atom, where the correlations with the boson system and with other atoms
is neglected. Therefore, the overall effect on the vibrational state of the atom is
taken into account with the termav|v| from Eq. (1). Ignoring the contribution
of the boson to the specific heat of the thermodynamical system, one may want to
know the effect of dissipation on the specific heat of the vibrational motion of the
atoms in the crystal. This effect is now possible to estimate since the Hamiltonian
is known (Eq. (8)). To be able to make the approximation using the classical
statistic mechanics, the integration appearing in the canonical Gibbs’ ensemble
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(Huang, 1987) of distinguishable particles,

1 .
Z= hW/‘exp(—ﬁH)dpdq, (14a)

must be thought in the sense of Lebesgue integration [10], and the function
exp(=pBH) mustbe thoughtin the sense of a “measurable function"[10]. Of course,
the following assumptions are followed: the Gibbs’ ensemble is almost everywhere
time independent; ergodicity is stablished on this systenpfer0 andp < 0; the
number of crossing points for going from> 0 to p < 0 (or vice versa) forms a
numerable set (therefore having measure zero in the phase space). In the expres-
sion (14a) N is the number of particle$,is the Planck’s constant andandg are

vectors in N-dimensional phase space representing the momentum and position
of each particle, anf is given in terms of the temperatufeand the Boltzmann’s
constank asg = 1/kT. The specific heat (at constant volume) is calculated from

the equation
9 ,dlogZ
Cv == (kT T ) (14b)

Since one is assuming no correlation between particles and decoupling of their
coordinates, Eq. (14a) can be written as

z=2N, (15a)
wherez is the partition function of just one degree of freedom,
1 1 +00 +00
z:E/exp(—ﬁH)dpdqzﬁf dq/ exp(gH)dp. (15b)

Using Eq. (11) and doing the integration with respect to the varippkeq. (15b)
is written as

- —2"‘””{ / " exp(p1 (@) + wq/m) dg
2h N
~+00
+ [ exptpt(-a) - aa/m dq}, (16a)
where f (q) is defined as
2 2
1@ = o | 1+ (1) ew@am]. (o0

This function is written at first order of approximationdras

1 2
f(q) ~ Ema)zq2 + éaw2q3. (16¢)
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Using this approximation in (16a) and a Taylor expansion of the term
exp(B20w?q3/3), one gets
16 «?kT

z= zkhT exp kT/2m3a)2){1— o

voe),  an

whereO(«?) represents the rest of the terms which are of the order higher or equal
to o3. Therefore, at the minimum order én one has

kT o?kT 16 a?kT
logZ = 3N Iog( >+2 77 Ig[ o 2} (18)

Now, using (14b), the specific heat is given by

— T (19)
2m3w? 3 1_ 16 ﬁ;t)Tz

2 2/ m3, 2
Cy — 3Nk o [ 3NK2 16 NK2/mPw }
The first term in (19) is the classical value for the specific heat, and the second
term is the contribution due to dissipation. The singularity appearing in (19) has
no meaning since the second term of this expression must be much less than the
first term for the approximation to be valid. This means that the following relations
must satisfied

K 16 k/miw?
2
1, 20a
2méw? 91 _ 1_60t23kT2 < (202)
and
16 a2kT
’1 5 (206)

These two realtions determine the region of the parameaterg)(where the ap-
proximation (16c) is valid.

6. EFFECT ON THE QUANTIZED DISSIPATIVE
HARMONIC OSCILLATOR

One may see the effect of dissipation on the quantum harmonic oscillator
by observing the change in the eigenvalues of the quantized dissipative system.
The quantization can be done by associating an Hermitian operator to the classical
dissipative r-Hamiltonian. Using the well-known Weyl's quantization approach
(Perelomov, 1986), the Hermitian operator associated to the r-Hamiltonian function
(11) for p > O is given by

APl ~mw’q —i—a[ —i(q;‘)z—ihﬁ)} (21)
2m 2 m?2 ’
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where the commutation relation,[p] = ih has been used. Defining the non-

Hermitian operators
1 Mw i
at=—| /—g— ——p 22a
ﬁ[,/ o — p} (22a)

and
a:i[ @q+i—|@] (22b)
V2 h mwh
where the commutation relatioa,[a*] = 1is satisfied, Eq. (21) can be written as
H=Ho+ H, (23)
where the operatorﬁ oand ﬁ| are defined as
Ho = ho <a+a + %) (24a)

and
R h \32
H = zaw2<ﬁ) [a®+a(@")?+ata’+ (@at)*+a—a'].  (24b)
[

Itis well known that the eigenfunctions of (244)), have the following properties
ataln) = njn)
ajn) = ¥/nin - 1) (25)
atin) = Vn+1|n+1).

There is no contribution of; to the eigenvalue probleﬂ%lbn = Engpn at first
order in perturbation theory since (24b) contains only odd power terms of the
operatorsa anda*t. So, up to second order in perturbation theory (Bohm, 1979),
the eigenvalues of (23) are given by

1\ 3a?h?
E, = hw(h + 5) - (N> +n+1/2). (26)
The second term on the right side of (26) must be much less than the first one for
the approximation to be valid. This means that one must kage/m2w/h?.

7. CONCLUSIONS

For the harmonic oscillator with quadratic dissipation, a restricted constant
of motion, r-Lagrangian and r-Hamiltonian were deduced for the classical case.
The implications of having these function in statistic and quantum mechanics were
studied at first order in the dissipation parameter. The results (4), (8), (9a), (11),
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(12), (19), and (26) have the expected limit tor— O, and one sees that the
contribution of dissipation occurrs at orde.
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